Многоканальная смо с неограниченным ожиданием. Одноканальная смо с ожиданием

Рассмотрим теперь одноканальную СМО с ожиданием.

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание поток имеет интенсивность λ. Интенсивность потока обслуживания равна μ (т. е. в среднем непрерывно занятый канал будет выдавать μ обслуженных заявок). Длительность обслуживания - случайная величина, подчи­ненная показательному закону распределения. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Рассмотрим систему с ограниченной очередью . Предположим, что независимо оттого, сколько требований по­ступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N -требований (заявок), из которых одна обслуживается, а (N -1) ожидают, Клиенты, не попавшие в ожидание, вынуждены об­служиваться в другом месте и такие заявки теряются.

Обозначим - вероятность того, что в системе находится n заявок. Эта величина вычисляется по формуле:

Здесь - приведенная интенсивность потока. Тогда вероятность того, что канал обслуживания свободен и в системе нет ни одного клиента, равна: .

С учетом этого можно обозначить

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N-1):

вероятность отказа в обслуживании заявки:

относительная пропускная способность системы:

абсолютная пропускная способность:

А =q ∙λ;

среднее число находящихся в системе заявок:

среднее время пребывания заявки в системе:

;

средняя продолжительность пребывания клиента (заявки) в очереди:

W q =W s - 1/μ;

среднее число заявок (клиентов) в очереди (длина очереди):

L q =λ(1-P N )W q .

Рассмотрим пример одноканальной СМО с ожиданием.

Пример 9.2 . В зону таможенного контроля в пункте пропуска автомобили въезжают по системе электронной очереди. Каждое окно оформления прибытия/убытия представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих оформления, ограниченно и равно 3, то есть (N -1)=3. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль в зону таможенного контроля не пропускается, т.е. в очередь на обслуживание не становится. Поток автомобилей, прибывающих на оформление имеет интенсивность λ =0,85 (автомобиля в час). Время оформления автомобиля распределено по показательному закону и в среднем равно =1,05 час. Требуется определить вероятностные характеристики окна оформления прибытия/убытия пункта пропуска, работающего в стационарном режиме.

Решение.

Интенсивность потока обслуживаний автомобилей:

.

Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей λ и μ, т.е.

.

Вычислим вероятности нахождения п заявок в системе:

;

P 1 =ρ∙P 0 =0,893∙0,248=0,221;

P 2 =ρ 2 ∙P 0 =0,893 2 ∙0,248=0,198;

P 3 =ρ 3 ∙P 0 =0,893 3 ∙0,248=0,177;

P 4 =ρ 4 ∙P 0 =0,893 4 ∙0,248=0,158.

Вероятность отказа в обслуживании автомобиля:

P отк =Р 4 = ρ 4 ∙P 0 ≈0,158.

Относительная пропускная способность окна оформления:

q =1–P отк =1-0,158=0,842.

Абсолютная пропускная способность окна оформления

А =λ∙q =0,85∙0,842=0,716 (автомобиля в час).

Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):


.

Среднее время пребывания автомобиля в системе:

часа.

Средняя продолжительность пребывания заявки в очереди на обслуживание:

W q =W s -1/μ=2,473-1/0,952=1,423 часа.

Среднее число заявок в очереди (длина очереди):

L q =λ∙(1-P N)∙W q = 0,85∙(1-0,158)∙1,423=1,02.

Работу рассмотренного окна оформления можно считать удовлетворительной, так как не обслуживается в среднем 15,8% случаев (Р отк =0,158).

Рассмотрим простейшую СМО с ожиданием - одноканальную систему , в которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (т. е. в среднем непрерывно занятый канал будет выдавать обслуженных заявок в единицу (времени). Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Система с ограниченной длиной очереди. Предположим сначала, что количество мест в очереди ограничено числом , т. е. если заявка пришла в момент, когда в очереди уже стоят заявок, она покидает систему необслуженной. В дальнейшем, устремив к бесконечности, мы получим характеристики одноканальной СМО без ограничений длины очереди.

Будем нумеровать состояния СМО по числу заявок, находящихся в системе (как обслуживаемых, так и ожидающих обслуживания):

Канал свободен;

Канал занят, очереди нет;

Канал занят, одна заявка стоит в очереди;

Канал занят, заявок стоят в очереди;

Канал занят, т заявок стоят в очереди.

ГСП показан на рис. 5.8. Все интенсивности потоков событий, переводящих в систему по стрелкам слева направо, равны , а справа налево - . Действительно, по стрелкам слева направо систему переводит поток заявок (как только придет заявка, система переходит в следующее состояние), справа же налево - поток «освобождений» занятого канала, меющий интенсивность (как только будет обслужена очередная заявка, канал либо освободится, либо уменьшится число заявок в очереди).

Рис. 5.8. Одноканальная СМО с ожиданием

Изображенная на рис. 5.8 схема представляет собой схему размножения и гибели. Используя общее решение (5.32)-(5.34), напишем выражения для предельных вероятностей состояний (см. также (5.40)):

или с использованием :

Последняя строка в (5.45) содержит геометрическую прогрессию с первым членом 1 и знаменателем р; откуда получаем:

в связи с чем предельные вероятности принимают вид:

Выражение (5.46) справедливо только при (при она дает неопределенность вида ). Сумма геометрической прогрессии со знаменателем равна , и в этом случае

Определим характеристики СМО: вероятность отказа , относительную пропускную способность , абсолютную пропускную способность , среднюю длину очереди , среднее число заявок, связанных с системой , среднее время ожидания в очереди , среднее время пребывания заявки в СМО

Вероятность отказа. Очевидно, заявка получает отказ только в случае, когда канал занят и все т мест в очереди тоже:

Относительная пропускная способность:

Абсолютная пропускная способность:

Средняя длина очереди. Найдем среднее число заявок, находящихся в очереди, как математическое ожидание дискретной случайной величины - числа заявок, находящихся в очереди:

С вероятностью в очереди стоит одна заявка, с вероятностью - две заявки, вообще с вероятностью в очереди стоят заявок, и т. д., откуда:

Поскольку , сумму в (5.50) можно трактовать как производную по от суммы геометрической прогрессии:

Подставляя данное выражение в (5.50) и используя из (5.47), окончательно получаем:

Среднее число заявок, находящихся в системе. Получим далее формулу для среднего числа заявок, связанных с системой (как стоящих в очереди, так и находящихся на обслуживании). Поскольку , где - среднее число заявок, находящихся под обслуживанием, а известно, то остается определить . Поскольку канал один, число обслуживаемых заявок может равняться (с вероятностью ) или 1 (с вероятностью ), откуда:

и среднее число заявок, связанных с СМО, равно

Среднее время ожидания заявки в очереди. Обозначим его ; если заявка приходит в систему в какой-то момент времени, то с вероятностью канал обслуживания не будет занят, и ей не придется стоять в очереди (время ожидания равно нулю). С вероятностью она придет в систему во время обслуживания какой-то заявки, но перед ней не будет очереди, и заявка будет ждать начала своего обслуживания в течение времени (среднее время обслуживания одной заявки). С вероятностью в очереди перед рассматриваемой заявкой будет стоять еще одна, и время ожидания в среднем будет равно , и т. д.

Если же , т. е. когда вновь приходящая заявка застает канал обслуживания занятым и заявок в очереди (вероятность этого ), то в этом случае заявка не становится в очередь (и не обслуживается), поэтому время ожидания равно нулю. Среднее время ожидания будет равно:

если подставить сюда выражения для вероятностей (5.47), получим:

Здесь использованы соотношения (5.50), (5.51) (производная геометрической прогрессии), а также из (5.47). Сравнивая это выражение с (5.51), замечаем, что иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Среднее время пребывания заявки в системе. Обозначим матожидание случайной величины - время пребывания заявки в СМО, которое складывается из среднего времени ожидания в очереди и среднего времени обслуживания . Если загрузка системы составляет 100 %, очевидно, , в противном же случае

Пример 5.6. Автозаправочная станция (АЗС) представляет собой СМО с одним каналом обслуживания (одной колонкой).

Площадка при станции допускает пребывание в очереди на заправку не более трех машин одновременно . Если в очереди уже находятся три машины, очередная машина, прибывшая к станции, в очередь не становится. Поток машин, прибывающих для заправки, имеет интенсивность (машина в минуту). Процесс заправки продолжается в среднем 1,25 мин.

Определить:

вероятность отказа;

относительную и абсолютную пропускную способности АЗС;

среднее число машин, ожидающих заправки;

среднее число машин, находящихся на АЗС (включая обслуживаемую);

среднее время ожидания машины в очереди;

среднее время пребывания машины на АЗС (включая обслуживание).

иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Находим вначале приведенную интенсивность потока заявок:

По формулам (5.47):

Вероятность отказа .

Относительная пропускная способность СМО

Абсолютная пропускная способность СМО

Машины в мин.

Среднее число машин в очереди находим по формуле (5.51)

т. е. среднее число машин, ожидающих в очереди на заправку, равно 1,56.

Прибавляя к этой величине среднее число машин, находящихся под обслуживанием

получаем среднее число машин, связанных с АЗС.

Среднее время ожидания машины в очереди по формуле (5.54)

Прибавляя к этой величине , получим среднее время, которое машина проводит на АЗС:

Системы с неограниченным ожиданием . В таких системах значение т не ограничено и, следовательно, основные характеристики могут быть получены путем предельного перехода в ранее полученных выражениях (5.44), (5.45) и т. п.

Заметим, что при этом знаменатель в последней формуле (5.45) представляет собой сумму бесконечного числа членов геометрической прогрессии. Эта сумма сходится, когда прогрессия бесконечно убывающая, т. е. при .

Может быть доказано, что есть условие, при котором в СМО с ожиданием существует предельный установившийся режим, иначе такого режима не существует, и очередь при будет неограниченно возрастать. Поэтому в дальнейшем здесь предполагается, что .

Если , то соотношения (5.47) принимают вид:

При отсутствии ограничений по длине очереди каждая заявка, пришедшая в систему, будет обслужена, поэтому ,

Среднее число заявок в очереди получим из (5.51) при :

Среднее число заявок в системе по формуле (5.52) при

Среднее время ожидания получим из формулы

(5.53) при :

Наконец, среднее время пребывания заявки в СМО есть

Многоканальная СМО с ожиданием

Система с ограниченной длиной очереди . Рассмотрим канальную СМО с ожиданием, на которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (для одного канала) ; число мест в очереди .

Состояния системы нумеруются по числу заявок, связанных системой:

нет очереди:

Все каналы свободны;

Занят один канал, остальные свободны;

Заняты каналов, остальные нет;

Заняты все каналов, свободных нет;

есть очередь:

Заняты все n каналов; одна заявка стоит в очереди;

Заняты все n каналов, r заявок в очереди;

Заняты все n каналов, r заявок в очереди.

ГСП приведен на рис. 5.9. У каждой стрелки проставлены соответствующие интенсивности потоков событий. По стрелкам слева направо систему переводит всегда один и тот же поток заявок с интенсивностью , по стрелкам справа налево систему переводит поток обслуживании, интенсивность которого равна , умноженному на число занятых каналов.

Рис. 5.9. Многоканальная СМО с ожиданием

Граф типичен для процессов размножения и гибели, для которой решение ранее получено (5.29)-(5.33). Напишем выражения для предельных вероятностей состояний, используя обозначение : (здесь используется выражение для суммы геометрической прогрессии со знаменателем ).

Таким образом, все вероятности состояний найдены.

Определим характеристики эффективности системы.

Вероятность отказа. Поступившая заявка получает отказ, если заняты все каналов и все мест в очереди:

Относительная пропускная способность дополняет вероятность отказа до единицы:

Абсолютная пропускная способность СМО:

Среднее число занятых каналов. Для СМО с отказами оно совпадало со средним числом заявок, находящихся в системе. Для СМО с очередью среднее число занятых каналов не совпадает со средним числом заявок, находящихся в системе: последняя величина отличается от первой на среднее число заявок, находящихся в очереди.

Обозначим среднее число занятых каналов . Каждый занятый канал обслуживает в среднем заявок в единицу времени, а СМО в целом обслуживает в среднем заявок в единицу времени. Разделив одно на другое, получим:

Среднее число заявок в очереди можно вычислить непосредственно как математическое ожидание дискретной случайной величины:

Здесь опять (выражение в скобках) встречается производная суммы геометрической прогрессии (см. выше (5.50), (5.51)-(5.53)), используя соотношение для нее, получаем:

Среднее число заявок в системе:

Среднее время ожидания заявки в очереди. Рассмотрим ряд ситуаций, различающихся тем, в каком состоянии застанет систему вновь пришедшая заявка и сколько времени ей придется ждать обслуживания.

Если заявка застанет не все каналы занятыми, ей вообще не придется ждать (соответствующие члены в математическом ожидании равны нулю). Если заявка придет в момент, когда заняты все каналов, а очереди нет, ей придется ждать в среднем время, равное (потому что «поток освобождений» каналов имеет интенсивность ). Если заявка застанет все каналы занятыми и одну заявку перед собой в очереди, ей придется в среднем ждать в течение времени (по на каждую впереди стоящую заявку) и т. д. Если заявка застанет в очереди заявок, ей придется ждать в среднем в течение времени . Если вновь пришедшая заявка застанет в очереди уже заявок, то она вообще не будет ждать (но и не будет обслужена). Среднее время ожидания найдем, умножая каждое из этих значений на соответствующие вероятности:

Так же, как и в случае одноканальной СМО с ожиданием, отметим, что это выражение отличается от выражения для средней длины очереди (5.59) только множителем , т. е.

Среднее время пребывания заявки в системе, так же, как и для одноканальной СМО, отличается от среднего времени ожидания на среднее время обслуживания, умноженное на относительную пропускную способность:

Системы с неограниченной длиной очереди . Мы рассмотрели канальную СМО с ожиданием, когда в очереди одновременно могут находиться не более заявок.

Так же, как и ранее, при анализе систем без ограничений необходимо рассмотреть полученные соотношения при .

Вероятности состояний получим из формул (5.56) предельным переходом (при ). Заметим, что сумма соответствующей геометрической прогрессии сходится при и расходится при . Допустив, что и устремив в формулах (5.56) величину m к бесконечности, получим выражения для предельных вероятностей состояний:

Вероятность отказа, относительная и абсолютная пропускная способность. Так как каждая заявка рано или поздно будет обслужена, то характеристики пропускной способности СМО составят:

Среднее число заявок в очереди получим при из (5.59):

а среднее время ожидания - из (5.60):

Среднее число занятых каналов , как и ранее, определяется через абсолютную пропускную способность:

Среднее число заявок, связанных с СМО, определяется как среднее число заявок в очереди плюс среднее число заявок, находящихся под обслуживанием (среднее число занятых каналов):

Пример 5.7. Автозаправочная станция с двумя колонками () обслуживает поток машин с интенсивностью (машин в минуту). Среднее время обслуживания одной машины

В данном районе нет другой АЗС, так что очередь машин перед АЗС может расти практически неограниченно. Найти характеристики СМО.

Поскольку , очередь не растет безгранично и имеет смысл говорить о предельном стационарном режиме работы СМО. По формулам (5.61) находим вероятности состояний:

Среднее число занятых каналов найдем, разделив абсолютную пропускную способность СМО на интенсивность обслуживания :

Вероятность отсутствия очереди у АЗС будет:

Среднее число машин в очереди:

Среднее число машин на АЗС:

Среднее время ожидания в очереди:

Среднее время пребывания машины на АЗС:

СМО с ограниченным временем ожидания. Ранее рассматривались системы с ожиданием, ограниченным только длиной очереди (числом заявок, одновременно находящихся в очереди). В такой СМО заявка, раз ставшая в очередь, не покидает ее, пока не дождется обслуживания. На практике встречаются СМО другого типа, в которых заявка, подождав некоторое время, может уйти из очереди (так называемые «нетерпеливые» заявки).

Рассмотрим СМО подобного типа, предполагая, что ограничение времени ожидания является случайной величиной.

Предположим, что имеется канальная СМО с ожиданием, в которой число мест в очереди не ограничено, но время пребывания заявки в очереди является некоторой случайной величиной со средним значением , таким образом, на каждую заявку, стоящую в очереди, действует своего рода пуассоновский «поток уходов» с интенсивностью заявок стоят в очереди и т. д.

Граф состояний и переходов системы показан на рис. 5.10.

Рис. 5.10. СМО с ограниченным временем ожидания

Разметим этот граф, как и раньше; у всех стрелок, ведущих слева направо, будет стоять интенсивность потока заявок . Для состояний без очереди у стрелок, ведущих из них справа налево, будет, как и раньше, стоять суммарная интенсивность потока обслуживании всех занятых каналов. Что касается состояний с очередью, то у стрелок, ведущих из них справа налево, будет стоять суммарная интенсивность потока обслуживании всех каналов плюс соответствующая интенсивность потока уходов из очереди. Если в очереди стоят заявок, то суммарная интенсивность потока уходов будет равна .

Как видно из графа, имеет место схема размножения и гибели; применяя общие выражения для предельных вероятностей состояний в этой схеме (используя сокращенные обозначения ) запишем:

Отметим некоторые особенности СМО с ограниченным ожиданием сравнительно с ранее рассмотренными СМО с «терпеливыми» заявками.

Если длина очереди не ограничена и заявки «терпеливы» (не уходят из очереди), то стационарный предельный режим существует только в случае (при соответствующая бесконечная геометрическая прогрессия расходится, что физически соответствует неограниченному росту очереди при ).

Напротив, в СМО с «нетерпеливыми» заявками, уходящими рано или поздно из очереди, установившийся режим обслуживания при достигается всегда, независимо от приведенной интенсивности потока заявок, не суммируя бесконечного ряда (5.63). Из (5.64) получаем:

а входящее в эту формулу среднее число занятых каналов можно найти как математическое ожидание случайной величины , принимающей значения с вероятностями :

В заключение заметим, что если в формулах (5.62) перейти к пределу при (или, что то же, при ), то при получатся формулы (5.61), т. е. «нетерпеливые» заявки станут «терпеливыми».

операции или эффективности системы массового обслуживания являются следующие.

Для СМО с отказами :

Для СМО с неограниченным ожиданием как абсолютная, так и относительная пропускная способности теряют смысл, так как каждая поступившая заявка рано или поздно будет обслужена. Для такой СМО важными показателями являются:

Для СМО смешанного типа используются обе группы показателей: как относительная и абсолютная пропускная способности , так и характеристики ожидания.

В зависимости от цели операции массового обслуживания любой из приведенных показателей (или совокупность показателей) может быть выбран в качестве критерия эффективности.

Аналитической моделью СМО является совокупность уравнений или формул, позволяющих определять вероятности состояний системы в процессе ее функционирования и рассчитывать показатели эффективности по известным характеристикам входящего потока и каналов обслуживания.

Всеобщей аналитической модели для произвольной СМО не существует . Аналитические модели разработаны для ограниченного числа частных случаев СМО. Аналитические модели, более или менее точно отображающие реальные системы, как правило, сложны и труднообозримы.

Аналитическое моделирование СМО существенно облегчается, если процессы, протекающие в СМО, марковские (потоки заявок простейшие, времена обслуживания распределены экспоненциально). В этом случае все процессы в СМО можно описать обыкновенными дифференциальными уравнениями, а в предельном случае, для стационарных состояний - линейными алгебраическими уравнениями и, решив их, определить выбранные показатели эффективности.

Рассмотрим примеры некоторых СМО.

2.5.1. Многоканальная СМО с отказами

Пример 2.5 . Три автоинспектора проверяют путевые листы у водителей грузовых автомобилей. Если хотя бы один инспектор свободен, проезжающий грузовик останавливают. Если все инспекторы заняты, грузовик, не задерживаясь, проезжает мимо. Поток грузовиков простейший, время проверки случайное с экспоненциальным распределением.

Такую ситуацию можно моделировать трехканальной СМО с отказами (без очереди). Система разомкнутая, с однородными заявками, однофазная, с абсолютно надежными каналами.

Описание состояний:

Все инспекторы свободны;

Занят один инспектор;

Заняты два инспектора;

Заняты три инспектора.

Граф состояний системы приведен на рис. 2.11 .


Рис. 2.11.

На графе: - интенсивность потока грузовых автомобилей; - интенсивность проверок документов одним автоинспектором.

Моделирование проводится с целью определения части автомобилей, которые не будут проверены.

Решение

Искомая часть вероятности - вероятности занятости всех трех инспекторов. Поскольку граф состояний представляет типовую схему "гибели и размножения", то найдем , используя зависимости (2.2).

Пропускную способность этого поста автоинспекторов можно характеризовать относительной пропускной способностью :

Пример 2.6 . Для приема и обработки донесений от разведгруппы в разведотделе объединения назначена группа в составе трех офицеров. Ожидаемая интенсивность потока донесений - 15 донесений в час. Среднее время обработки одного донесения одним офицером - . Каждый офицер может принимать донесения от любой разведгруппы. Освободившийся офицер обрабатывает последнее из поступивших донесений. Поступающие донесения должны обрабатываться с вероятностью не менее 95 %.

Определить, достаточно ли назначенной группы из трех офицеров для выполнения поставленной задачи.

Решение

Группа офицеров работает как СМО с отказами, состоящая из трех каналов.

Поток донесений с интенсивностью можно считать простейшим, так как он суммарный от нескольких разведгрупп. Интенсивность обслуживания . Закон распределения неизвестен, но это несущественно, так как показано, что для систем с отказами он может быть произвольным.

Описание состояний и граф состояний СМО будут аналогичны приведенным в примере 2.5.

Поскольку граф состояний - это схема "гибели и размножения", то для нее имеются готовые выражения для предельных вероятностей состояния:

Отношение называют приведенной интенсивностью потока заявок . Физический смысл ее следующий: величина представляет собой среднее число заявок, приходящих в СМО за среднее время обслуживания одной заявки.

В примере .

В рассматриваемой СМО отказ наступает при занятости всех трех каналов, то есть . Тогда:

Так как вероятность отказа в обработке донесений составляет более 34 % (), то необходимо увеличить личный состав группы. Увеличим состав группы в два раза, то есть СМО будет иметь теперь шесть каналов, и рассчитаем :

Таким образом, только группа из шести офицеров сможет обрабатывать поступающие донесения с вероятностью 95 %.

2.5.2. Многоканальная СМО с ожиданием

Пример 2.7 . На участке форсирования реки имеются 15 однотипных переправочных средств. Поток поступления техники на переправу в среднем составляет 1 ед./мин, среднее время переправы одной единицы техники - 10 мин (с учетом возвращения назад переправочного средства).

Оценить основные характеристики переправы, в том числе вероятность в немедленной переправе сразу по прибытии единицы техники.

Решение

Абсолютная пропускная способность , т. е. все, что подходит к переправе, тут же практически переправляется.

Среднее число работающих переправочных средств:

Коэффициенты использования и простоя переправы:

Для решения примера была также разработана программа. Интервалы времени поступления техники на переправу, время переправы приняты распределенными по экспоненциальному закону.

Коэффициенты использования переправы после 50 прогонов практически совпадают: .

Максимальная длина очереди 15 ед., среднее время пребывания в очереди около 10 мин.

Рассмотрим многоканальную СМО (п > 1), на вход которой поступает пуассоновский поток заявок с интенсивностью а интенсивность обслуживания каждого канала составляет р, максимально возможное число мест в очереди ограничено величиной т. Дискретные состояния СМО определяются количеством заявок, поступивших в систему, которые можно записать:

Sq - все каналы свободны, k = 0;

S - занят только один канал (любой), k = 1;

*5*2 - заняты только два канала (любых), k = 2;

S n - заняты все п каналов, k = п.

Пока СМО находится в любом из этих состояний, очереди нет. После того как заняты все каналы обслуживания, последующие заявки образуют очередь, тем самым определяя дальнейшее состояние системы:

S n + - заняты все п каналов и одна заявка стоит в очереди, k = п + 1;

S n +2 - заняты все п каналов и две заявки стоят в очереди, k = п + 2;

S n+m - заняты все п канатов и все т мест в очереди, k = n + m.

Граф состояний и-канальной СМО с очередью, ограниченной т местами, представлен на рис. 5.18.

Переход СМО в состояние с большими номерами определяется потоком поступающих заявок с интенсивностью

Рис. 5.18

тогда как по условию в обслуживании этих заявок принимают участие п одинаковых каналов с интенсивностью потока обслуживания, равной р для каждого канала. При этом полная интенсивность потока обслуживания возрастает с подключением новых каналов вплоть до такого состояния S n , когда все п каналов окажутся занятыми. С появлением очереди интенсивность обслуживания более не увеличивается, так как она уже достигла максимального значения, равного пх.

Запишем выражения для предельных вероятностей состояний


Выражение для ро можно преобразовать, используя формулу геометрической прогрессии для суммы членов со знаменателем р/п:


Образование очереди возможно, когда вновь поступившая заявка застанет в системе не менее п требований, т.е. когда в системе будет находиться п, п + 1, п + 2, (п + т - 1) требований. Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме соответствующих вероятностей р ю Рп+ьРп+ 2 > ->Рп+т- 1- Поэтому вероятность образования очереди равна

Вероятность отказа в обслуживании наступает тогда, когда все п каналов и все т мест в очереди заняты

Относительная пропускная способность будет равна

Абсолютная пропускная способность

Среднее число занятых каналов

Среднее число простаивающих каналов

Коэффициент занятости (использования) каналов

Коэффициент простоя каналов

Среднее число заявок, находящихся в очередях,

в случае если р/п = 1, эта формула принимает другой вид:

Среднее время ожидания в очереди определяется формулами Литтла

Среднее время пребывания заявки в СМО, как и для одноканальной СМО, больше среднего времени ожидания в очереди на среднее время обслуживания, равное 1/р, поскольку заявка всегда обслуживается только одним каналом:

Пример 5.21. В минимаркет поступает поток покупателей с интенсивностью шесть покупателей в минуту, которых обслуживают три контролера-кассира с интенсивностью два покупателя в минуту. Длина очереди ограничена пятью покупателями. Определите характеристики СМО и дайте оценку ее работы.

Решение

п = 3; т = 5; X = 6; р = 2; р = Х/х = 3; р/п = 1.

Находим предельные вероятности состояний СМО:

Доля времени простоя контролеров-кассиров

Вероятность того, что занят обслуживанием только один канал,

Вероятность того, что заняты обслуживанием два канала,

Вероятность того, что заняты все три канала,

Вероятность того, что заняты все три канала и пять мест в очереди,

Вероятность отказа в обслуживании наступает при k = т + п = = 5 + 3 = 8 и составляет р$ = р ОТК = 0,127.

Относительная и абсолютная пропускные способности СМО соответственно равны Q = 1 - р отк = 0,873 и Л = 0,873А. = 5,24 (поку- пателя/мин).

Среднее число занятых каналов и средняя длина очереди равны:

Среднее время ожидания в очереди п пребывания в СМО соответственно равно:

Система обслуживания минимаркета заслуживает высокой оценки, поскольку средняя длина очереди, среднее время пребывания покупателя в очереди составляют малые величины.

Пример 5.22. Па плодоовощную базу в среднем через 30 мин прибывают автомашины с плодоовощной продукцией. Среднее время разгрузки одной машины составляет 1,5 ч. Разгрузку производят две бригады грузчиков. На территории базы у дебаркадера могут находиться в очереди в ожидании разгрузки не более четырех автомашин. Определим показатели и дадим оценку работы СМО.

Решение

СМО двухканальная, п = 2 с ограниченным числом мест в очереди m = 4, интенсивность входящего потока л. = 2 авт/ч, интенсивность обслуживания ц = 2/3 авт/ч, интенсивность нагрузки р = А./р = 3, р/п = 3/2 = 1,5.

Определяем характеристики СМО:

Вероятность того, что все бригады не загружены, когда нет автомашин,


Вероятность отказа, когда под разгрузкой два автомобиля, а в очереди четыре автомобиля,

Среднее число автомашин в очереди

Доля времени простоя грузчиков очень мала и составляет всего 1,58% рабочего времени, а вероятность отказа велика - 36% заявок из числа поступивших получают отказ в разгрузке, обе бригады практически заняты полностью, коэффициент занятости близок к единице и равен 0,96, относительная пропускная способность мала - всего 64% из числа поступивших заявок будут обслужены, средняя длина очереди - 2,6 автомашины, следовательно, СМ О нс справляется с выполнением заявок на обслуживание и необходимо увеличить число бригад грузчиков и шире использовать возможности дебаркадера.

Пример 5.23. Коммерческая фирма получает но кольцевому завозу ранние овощи из теплиц пригородного совхоза в случайные моменты времени с интенсивностью 6 ед. в день. Подсобные помещения, оборудование и трудовые ресурсы позволяют обработать и хранить продукцию в объеме 2 ед. В фирме работают четыре человека, каждый из которых в среднем может обработать продукцию одного завоза в течение 4 ч. Продолжительность рабочего дня при сменной работе составляет 12 ч. Какова должна быть емкость складского помещения, чтобы полная обработка продукции была бы не менее 97% из числа осуществляемых поставок?

Решение

Решим задачу путем последовательного определения показателей СМО для различных значений емкости складского помещения т = 2, 3, 4, 5 и т.д. и сравнения на каждом этапе расчетов вероятности обслуживания с заданной величиной р 0 ()С = 0,97.

Определяем интенсивность нагрузки:

Находим вероятность, или долю времени, простоя для т = 2:

Вероятность отказа в обслуживании, или доля потерянных заявок,

Вероятность обслуживания, или доля обслуженных заявок из числа поступивших, составляет

Поскольку полученная величина меньше заданной величины 0,97, то продолжаем вычисления для т = 3. Для этой величины показатели состояний СМО имеют значения


Вероятность обслуживания и в этом случае меньше заданной величины, поэтому продолжаем вычисления для следующего т = 4, для которого показатели состояния имеют такие значения: р$ = 0,12; Ротк = 0,028; Pofc = 0,972. Теперь полученная величина вероятности обслуживания удовлетворяет условию задачи, поскольку 0,972 > 0,97, следовательно, емкость складского помещения необходимо увеличить до объема 4 ед.

Для достижения заданной вероятности обслуживания можно подобрать таким же образом оптимальное количество человек на обработке овощей, проводя последовательно вычисления показателей СМО для п = 3, 4, 5 и т.д. Компромиссный вариант решения можно найти путем сравнения и сопоставления для разных вариантов организаций СМО затрат, связанных как с увеличением числа работающих, так и с созданием специального технологического оборудования но обработке овощей на коммерческом предприятии.

Таким образом, модели массового обслуживания в сочетании с экономическими методами постановки задач позволяют проводить анализ существующих СМО, разрабатывать рекомендации по их реорганизации для повышения эффективности работы, а также определять оптимальные показатели вновь создаваемых СМО.

Пример 5.24. На автомойку в среднем за час приезжают девять автомобилей, но если в очереди уже находятся четыре автомобиля, вновь подъезжающие клиенты, как правило, не встают в очередь, а проезжают мимо. Среднее время мойки автомобиля составляет 20 мин, а мест для мойки всего два. Средняя стоимость мойки автомобиля составляет 70 руб. Определите среднюю величину потери выручки автомойки в течение дня.

Решение

X = 9 авт/ч; = 20 мин; п = 2;т = 4.

Находим интенсивность нагрузки Определяем долю времени простоя автомойки

Вероятность отказа

Относительная пропускная способность равна Абсолютная пропускная способность Среднее число автомобилей в очереди

Среднее число заявок, находящихся в обслуживании,

Среднее время ожидания в очереди

Среднее время пребывания автомашины на мойке

Таким образом, 34% заявок не будут обслужены, потеря за 12 ч работы одного дня составит в среднем 2570 руб. (12*9* 0,34 70), т.е. 52% от всей выручки, поскольку р отк = 0,52 р 0 ^ с.

  • относительная пропускная способность, или вероятность обслуживания, абсолютная пропускная способность среднее число занятых бригад коэффициент занятости работой бригад грузчиков

Рассмотрим многоканальную СМО, на вход которой поступает пуассоновский поток заявок с интенсивностью, а интенсивность обслуживания каждого канала составляет, максимально возможное число мест в очереди ограничено величиной m. Дискретные состояния СМО определяются количеством заявок, поступивших в систему, которые можно записать.

Все каналы свободны, ;

Занят только один канал (любой), ;

  • - заняты только два канала (любых), ;
  • - заняты все каналов, .

Пока СМО находится в любом из этих состояний, очереди нет. После того как заняты все каналы обслуживания, последующие заявки образуют очередь, тем самым, определяя дальнейшие состояние системы:

Заняты все каналов и одна заявка стоит в очереди,

Заняты все каналов и две заявки стоят в очереди,

Заняты все каналов и все мест в очереди,

Переход СМО в состояние с большими номерами определяется потоком поступающих заявок с интенсивностью, тогда как по условию в обслуживании этих заявок принимают участие одинаковых каналов с интенсивностью потока обслуживания равного для каждого канала. При этом полная интенсивность потока обслуживания возрастает с подключением новых каналов вплоть до такого состояния, когда все n каналов окажутся занятыми. С появлением очереди интенсивность обслуживания более увеличивается, так как она уже достигла максимального значения, равного.

Запишем выражения для предельных вероятностей состояний:

Выражение для можно преобразовать, используя формулу геометрической прогрессии для суммы членов со знаменателем:

Образование очереди возможно, когда вновь поступившая заявка застанет в системе не менее требований, т.е. когда в системе будет находиться требований.

Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме соответствующих вероятностей

Поэтому вероятность образования очереди равна:

Вероятность отказа в обслуживании наступает тогда, когда все каналов и все мест в очереди заняты:

Относительная пропускная способность будет равна:

Абсолютная пропускная способность -

Среднее число занятых каналов -

Среднее число простаивающих каналов -

Коэффициент занятости (использования) каналов -

Коэффициент простоя каналов -

Среднее число заявок, находящихся в очередях -

В случае если, эта формула принимает другой вид -

Среднее время ожидания в очереди определяется формулами Литтла -